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Kurzfassung

Überwachtes Maschinelles Lernen benötigt Training mit gelabelten Daten, welche teuer
sind, wenn Menschen sie annotieren müssen. Aktives Lernen zielt darauf ab, den Annota-
tionsaufwand zu reduzieren indem es geeignete Trainingssamples auswählt welche zu einer
höheren Performance des ML-Algorithmus führen als zufällig gewählte Traininsdaten.
Die Aufgabe für die wir Aktives Lernen untersuchen möchten ist die Klassifikation von
Dokumenten. Wir sehen uns mit einer Situation konfrontiert in der wir keinen Zugang zu
den ungelabelten Daten und keinen Zugang zu dem ML-Modell haben. Die Auswahl der
Samples basiert alleinig auf den Vorhesagevektoren welche von dem ML-Modell erzeugt
werden. Wir experimentieren mit Szenarien in welchen wir Zugang zu Daten und Modell
haben, um zu sehen ob unsere Methoden besser performen in solch einem Fall. Die
Aktives Lernen Methoden, die wir verwenden, bauen auf verschiedenen Annahmen auf
und können in drei Familien eingeteilt werden: Individuelle Score Berechnungen, Distanz-
basierte Teilmengen Auswahl und Methoden zur Vorhersage der Modellverbesserung. Um
die Aktives Lernen Methoden zu evaluieren, führen wir ein neues Maß ein und benutzen
es, um die verschiedenen Methoden zu vergleichen. Unsere Experimente zeigen einen
klaren Vorteil des Einsatzes von Aktives Lernen Methoden gegenüber keinem Einsatz
von Aktivem Lernen.
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Abstract

Supervised machine learning algorithms require training on labeled training data which
is expensive to obtain when the labels have to by annotated by humans. Active Learning
aims to reduce the annotation effort by selecting suitable training samples which yield
a higher performance of the machine learning algorithm then random chosen training
samples. The task we want to explore Active Learning methods for is the classification of
documents. We face a situation where we do not have access to the unlabeled data and do
not have access to the machine learning model. The selection of samples happens solely
on the prediction vector made by the machine learning model for individual samples.
We experiment with scenarios where we have access to data and model to see if our
methods perform better in such a case. The Active Learning methods which we employ
are built on different assumptions and can be categorized into three families: individual
score calculations, distance based subset selections and model improvement prediction
methods. To evaluate Active Learning methods we introduce a novel measure and use it
to compare different methods. Our experiments show a clear advantage of using Active
Learning methods over no Active Learning.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement

Machine learning is a multipurpose technology in the sense that it can be applied to many
abstract and real world problems. One of the applications lies in information extraction
from documents, in particular in classifying documents and segments of documents.
This master thesis is conducted within the scope of the K.Rex project [1]. The task we
face here is the automatic analysis of real world documents. Documents can be emails,
handwritten notes, chat records, blueprints, invoices, contracts, et cetera. The ultimate
goal is to find relevant documents in the set of all documents. What a relevant document
is differs from data set to data set and is not known beforehand.
In the current phase of the project the task is to classify documents into classes that are
defined by the users of the system. For the classification a machine learning algorithm is
used. The machine learning algorithm requires training on a batch of documents, also
called samples. Different batches of training samples lead to different behavior of the
trained machine learning algorithm.
We have the task of finding the right batch of documents for training the classification
algorithm, such that the performance of the trained algorithm is higher then the per-
formance of the algorithm trained on a random batch of documents. In the best case,
we find the training batch that leads to the algorithm outperforming all algorithms of
the same architecture trained on the other possible training batches. Performance is
measured as the percentage of correctly classified documents, collected in a withheld test
set which is never used for training. A high percentage of correctly classified samples
means a high performance. The crucial point is that only labeled documents can be
used for training the classification algorithm. A labeled document is a document that
is assigned to a class. The labeling is done by human experts. Experts do not work
for free, so the labeling comes with a price. Since the hourly rates of experts are high,
the labeling is costly as well. With a fixed budget of human expert hours, we want to
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1. Introduction

maximize the performance of the classification algorithm. Finding the right samples for
that, without knowing their labels a priori, is the problem we want to solve. The research
area engaged with this is Active Learning.

1.2 Aim of the Work
The aim of the work is to review the state of the art methods used in Active Learning and
to identify the best approaches for the given project set up. Implementation of the most
promising approaches and experiments on public data sets and case specific data should
clarify if Active Learning can reduce the number of needed training samples and therefore
reduce the cost of labeling. We aim to adapt algorithms like Multi-Armed bandits and
the concept of reinforcement learning to the active learning framework and develop new
methods to select the batch of training samples, which maximize the performance of the
classification algorithm. The research questions we want to answer are:

• By how much can the use of Active Learning methods reduce the number of needed
training samples without reducing classification performance significantly?

• Which Active Learning method performs best?
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CHAPTER 2
Related Work

In this section we describe related work in the area of Active Learning. We summarize
state of the art frameworks and methods and see if they are applicable to our use-case.
We further categorize the presented methods on different dimensions. If we make use of
prior work in our work, we refer to the section where we do so.
Active Learning is a subfield of supervised learning, which is a subset of machine learning.
Supervised learning algorithms need to be trained on a lot of labeled samples. An Active
Learning algorithm is allowed to choose the instances from which it learns [2], opposed
to a passive or offline learner which cannot choose the data it learns from. “The key
hypothesis is that if the learning algorithm is allowed to choose the data from which it
learns [...] it will perform better with less training” [2]. Being active means that the
Active Learner puts out queries to an oracle or human annotator. The queries are sets of
unlabeled samples which are then labeled by the oracle or human annotator.
From a data point of view, a rough subdivision of Active Learning methods can be made
in membership query synthesis, stream-based selective sampling and pool-based sampling
[2]. They differ with respect to the availability of unlabeled data.

Membership queries

Membership queries are sets of synthetic samples generated by the Active Learning
method itself. So instead of selecting a set of real samples, the Active Learning method
generates new samples. The human annotator is then asked to label the newly generated
samples. Often these artificial samples have no natural meaning for the human annotator.
In the case of images one might think of random generated pixels and in the case of text
one might imagine gibberish, which a human annotator has to give meaningful labels to.
Therefore this approach “is reasonable for many problems, but labeling such arbitrary
instances can be awkward [...]” [2].

3



2. Related Work

Stream-based

Stream-based Active Learning methods decide for individual samples drawn from a data
source if the human annotator should label the sample or not. Methods from this category
are usually employed when “[...] obtaining an unlabeled instance is free (or inexpensive)”
[2]. The decision if a sample should be labeled by a human annotator can be made
based on a simple threshold: If the machine learning models prediction confidence is
under that threshold it should be labeled by a human annotator, otherwise not. While
stream-based methods are straightforward and computationally cheaper than sample
generating methods, they have one big drawback. Since a stream-based Active Learning
method decides for every sample individually if the label should be requested or not, the
number of samples that should be labeled are not known a priori. When wanting to
reduce the annotation effort this type of methods may not be suitable.

Pool-based

Pool-based sampling methods overcome this issue of not knowing in advance how many
samples a human annotator has to label. These approaches assume a pool of unlabeled
samples, which can then be ranked or partitioned into subsets. The assumption of “large
collections of unlabeled data [that] can be gathered at once” [2] holds for many real-world
problems. The methods on how to rank the samples or select a subset of samples can be
the same as in a stream-based approach. The decision for a stream-based or pool-based
approach is mostly based on the circumstances of data gathering and management. If
the freedom of choice is given, pool-based approaches are to be preferred. In the K.Rex
project we deal with a collection of documents, which is the pool of unlabeled samples
we just talked about. A schematic comparison of the three different scenarios can be
seen in Figure 2.1.

Retraining

Another typical set up where Active Learning is used is retraining an already trained
base model, which is also called retraining-based Active Learning. In [3] the authors
retrain a machine learning model on unlabeled samples. Since labeled samples are needed
to retrain a supervised machine learning algorithm, the authors do the retraining for
all possible labels. Based on the outcome an average-case or worse-case performance is
obtained. The sample which maximizes the performance is chosen as the Active Learning
query to the oracle or human annotator. This requires k rounds of retraining the machine
leaning model for a single sample, where k is the number of classes. When retraining
the machine learning model is computationally expensive, this approach is not suitable.
Nonetheless, the circumstances of retraining an already trained base model apply to the
K.Rex project as well. The purpose of retraining the model here is that we want to adapt
the base model for each case individually. The reasons for this are legal requirements,
which do not allow information transfer from one case to the other. For each new case
the training data is obtained by human experts, who annotate and label documents to do
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Figure 2.1: Diagram illustrating the three main active learning scenarios from [2]
.

so. The human experts are expensive, so in the best case we want them only to label the
“set of points such that a model learned over the selected subset is competitive for the
remaining data points” [4]. Every case is different in the sense that there are different
classes for the documents to fall into. Having only a few training samples available
for each class is known as Few-Shot learning [5, 6]. Typically few-shot methods use
prior knowledge to extend the training data or to constrain the hypothesis space. Prior
knowledge can come in explicit form like data from related domains or in implicit form
as in pre-trained weights of machine leaning models. In Section 3.2 we will see in detail
an example from the latter approach, which we utilize in our case. The idea in [6] is
to learn how a model learns, based on only a few training examples. We will see two
methods of this type of meta-learning in Sections 4.4.1 and 4.4.2.

Double black-box scenario

Another speciality that we face in the project setup is that we only have limited or no
access to the base model itself. We do not know the architecture of it and do not know
how it was trained. However, we have the possibility to query the model and observe
the output, namely the predictions. This set up is well known in other research areas
of machine learning, such as security of ml-models. In [7] the authors want to mimic a
target machine learning model by training an own white box model. They use Active
Learning methods to find samples which lead to the best performance of the white box
model. The labels are then given by the target model instead of a human annotator.
A setting where the model is not accessible is usually referred to as a black-box setting
[8]. We distinguish between three black-box settings: Either the model, the samples, or
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both serve as a black-box. In Figure 2.2 we see a diagram illustrating the three black-box
scenarios and the usual white-box scenario where we have access to all parts of the
machine learning process. Depending on the scenario some Active Learning methods
are applicable and some are not. We will explicitly state in which settings our methods
fall into. The situation in the K.Rex project is best described by the fourth scenario in
Sub-figure 2.2d. We do not have access to the samples and do not have access to the
machine learning model.

(a) White box setting (b) Machine learning model as black-box

(c) Samples as black-box (d) Samples and ml model as black-box

Figure 2.2: Four different scenarios for an Active Learning module
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With that being said, we continue and categorize the Active Learning methods further
by the assumptions they are built on. Mainly three categories can be distinguished [9]:

• uncertainty-based approaches

• diversity-based approaches

• expected model change approaches.

Uncertainty

Uncertainty-based approaches try to select the samples that the model is most uncertain
about. Uncertainty is defined with respect to the confidence probabilities a machine
learning model outputs. Therefore, methods which fall into this category are suitable for
a double-black-box scenario as in our case. A notable example of a uncertainty-based
approach is the query-by-committee (QBC) algorithm [10, 2]. Here a committee of
models C = {M1,M2, ...,Mn} is trained on the data available. After that, the classes of
the unlabeled samples are predicted. The sample that the models most disagree on is
chosen as the one which needs to be labeled. Observation showed that uncertainty-based
approaches do often select samples that are highly correlated [11].

Diversity

Samples which are highly correlated are unfavorable for machine learning algorithms. For
that, more recent methods try to overcome this problem with diversity-based approaches.
Methods which fall into this category try to select a set of data points, which is diverse
enough to represent the whole distribution of the unlabeled samples. They are built
on the assumption that a diverse training set leads to a high performance of a machine
learning model. Just like uncertainty the notation of diversity has to be defined and
differs from method to method. A notable example of diversity in the area of image
classification is the so called contextual diversity, which defines diversity via the spatial
neighborhood of objects. The higher the number of potential misleading objects in a set
of images is, the higher the contextual diversity for that batch [11].
Any form of uncertainty or diversity can either be obtained via individual predictions
[2, 7] or over the whole prediction space [12]. The authors of [12] for example try to split
the version space with ever new training sample in two equal parts. They make use of
the support vectors employed in support-vector machines.

Relation to statistics

By interpreting the predictions for samples as discrete probability distributions we are
able to exploit a range of information theoretical measures. The most famous information
measure is probably Shannon entropy [13], which we will see in section 4.1.4. The Akaike
information criterion [14] and Bayesian information criterion [15] are measures employed
in model selection. They measure a relative information loss between two models and
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can therefore be used to select the model with the lowest information loss out of a finite
selection of models. Since Active Learning does not select models but rather training
samples we do not make use of those criteria.
In order to compare probability distributions we can measure their “distance” to each
other. For that, we calculate their divergence [16], which is a function mapping both
probability distributions onto the positive real numbers. The only case for the function to
be zero is when both probability distributions are the same. Every function which fulfils
these two criteria is considered a (statistical) divergence. Notable distance measures
between probability distributions are Jensen–Shannon divergence [17] , which is sometimes
referred to as the information radius, and the Kullback–Leibler divergence [18]. We will
see in Section 4.2 and 4.3 how we can use such distance measures to obtain a diverse
set of samples. Choosing a subset of elements out of a super set is generally known as
sampling in statistics [19]. The challenge here is to draw unbiased samples from a pool of
samples. This is usually achieved by drawing random samples. Another popular approach
is Thompson Sampling [20] which samples actions from a distribution of expected rewards.
Thompson sampling is usually used to solve the multi-armed bandit problem [21] which we
will introduce in the next point. Active Learning itself is sometimes described as Optimal
experimental design which is for example used for designing experiments to uncover
biological networks [22]. The most used criteria in optimal experiment design depend
on the so called information matrix which is the inverse of the variance matrix of the
models parameters [23]. Different minimization or maximizing efforts on the information
matrix lead to different optimalities. For example, maximizing the determinant of the
information matrix leads to a “D-optimal” design where the D stands for determinant.

Expected model change

Novel approaches to Active Learning fall into the expected model change category. The
intuition behind methods from this category is to predict a model change based on
previous model changes. This kind of problem solving is quite a natural approach in the
area of machine learning.
A metaphoric description of the problem we would like to solve is the multi-armed bandit.
In a multi-armed bandit setting [24] every sample is considered a lever of a gambling
machine called multi-armed bandit. Each lever (or arm) leads to a different reward. As
an example one might think of maximizing the click-through rate for a website. The
click-through rate depends on the content shown. While the different contents correspond
to the different arms on the slot machine the click rate of a user of the website corresponds
to the reward. Which content is shown to the user is learned through the behavior of
other users and/or prior visits of the website. In other words the content which we see
on our favourite apps is far from being random.
In the context of Active Learning, the different levers correspond to the different samples
[25]. The reward is usually the expected change in model performance. It is important to
note that the reward is only revealed for the chosen lever, similar to the active learning
scenario as well. Only samples which are annotated can be used to (re-)train a model.
Based on the revealed reward or model change future samples are chosen. In addition
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to the history of revealed rewards other information can be considered when making a
decision. Situations where this is possible are usually best described with Contextual
Multi-Armed bandits [26]. The context is “a set of covariates of fixed dimensionality”
[26]. Depending on the scenario, the context can be the samples, the representation of
the samples inside the machine learning model (feature space) or just the confidence
probabilities, or any combination of those three things [25]. Additionally, one can also
exploit external data sources which brings us back to the topic of few shot learning [5].
The most recent approaches focus on the decision whether and when to ask a human
expert [27, 6, 28] or how to efficiently teach a learner [29]. Mozannar and Sontag [27]
propose a framework where a rejector has to make the decision whether to ask a human
expert or a machine learning classifier. The rejector itself is a predictor. In order for
the rejector to learn the right decision the costs for the different decisions and their
consequences are implemented via the loss function. In [28] a predictor predicts if a a
sample needs a human label or not. The input which the predictor receives in this case
is two fold consisting of a syntax and semantic vector.
Most methods from the expected model change category employ machine learning mod-
els for their purpose. Especially reinforcement learning [30] can be used to learn a
good policy for decision making. Reinforcement learning is the third machine learning
paradigm next to supervised and unsupervised learning. In this work, we touch on all
three paradigms. We deal in a supervised fashion with labeled data and in a unsupervised
way with unlabeled data which we would like to categorize. Reinforcement learning
usually deals with an agent navigating in an environment. The agent has been appointed
with solving a certain task. When successful the agent is given a reward. The agent itself
is a machine learning model which tries to maximize its reward. Algorithms from the
area of Contextual Multi-Armed bandit problems are sometimes referred to as associative
reinforcement learning as well [26]. We will see methods based on multi-armed bandits
and reinforcement learning in Sections 4.4.1 and 4.4.2.

Human centred approaches

More human centred approaches are found in the area of Explainable AI and its con-
nections to active learning [31]. Instead of focusing on the pure information gain a
model achieves when trained on one batch of samples over the other, human centred
approaches focus on the annotator and the work she has to do. A relatively simple and
straight forward approach to reduce the annotation effort is the following: The model
presents the predictions to the annotator and annotations are only made as corrections if
necessary [32]. So called coactive leaning is employed in the document annotator tool
used in the K.Rex project as well. A core observation is that “users [of machine learning
systems] [...] value transparency beyond performance” [31]. Transparency as achieved
by explaining black-box models can either come as local or global explanations. While
global explanations reflect the reasoning process of the whole model, local explanations
explain decisions for a single sample. Annotators are often experts in their own field but
not necessarily in machine learning. For that annotators might prefer local over global
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explanations [31]. Local explanations can come as textual or visual artefacts, which
highlight the importance of certain features for the model’s decision. A notable algorithm
which works like that is the LIME algorithm [33]. Besides highlighting important parts
of the input for the model’s decision LIME is model agnostic which means that it is
perfectly applicable if the model comes as a black-box.

10



CHAPTER 3
Theoretical Foundations

In this chapter we lay out the theoretical foundations of our tasks and algorithms we use.

3.1 Machine learning task
We formulate the machine learning task in mathematical terms [34, 35]. LetD = {(xi, yi)}
be a labelled data set, where xi is a feature vector, yi ∈ 1, ...,K a class label and
i = 1, ..., N the number of feature vector label pairs. Feature vectors are the symbolic
representation of samples. We use both words interchangeably.
We have a classification modelM , which is trained on training data and makes predictions
yM (·) in the form of giving confidence probabilities [21]:

pM (y = k | x) for each class k = 1, ...,K. (3.1)

Typically one chooses

yM (x) = argmax
k

pM (y = k | x) (3.2)

as the predicted class, when using model M to predict the class of a sample.
The overall performance of the classification model can be measured with different metrics
like Recall, Precision and F1 score, which are all calculated from the confusion matrix
A = (ai,j)i,j=0..K . An entry ai,j in the matrix is the number of samples, which belong
to class i and are classified as class j. As an evaluation criterion for our task, we use
multi-class accuracy obtained via

multi-class accuracy =
∑K
i=1 ai,i∑K
i,j=1 ai,j

, (3.3)

and call this measure accuracy on classes or just accuracy.
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3. Theoretical Foundations

3.2 Transfer learning
Since we use transfer learning [36, 37] for our experiments, we define what we mean
by this. For this, we specify our model M , which is a neural network in our case. An
important decision when setting up a neural network is the type of layer(s) it is made
of. In fact, the type of layers is name-giving to the overall network. Apart from the
types of layers, a neural network has several hyper-parameters describing its architecture.
These hyper-parameters are related to the number of neurons, number of layers and their
connection. Since we will fix these-hyper parameters, we do not define them formally,
but just state them when needed. In addition to hyper-parameters, a neural network has
parameters that are optimized in the training process. These parameters are typically
the weights between the neurons and biases. We will refer to the set of all weights and
biases as θ, which gives us a parameterized model Mθ. Usually one starts with randomly
initialized weights, which are then changed during training.
The intuition behind transfer learning is that already trained models learn faster than
fresh models. In detail, transfer learning works as follows: We start with a model Mθ0 ,
which was trained on training data D0, which does not have to be from the same domain
as the data we use to solve our task. We adapt the architecture of model M to our
task respectively data and obtain model M ′, which is similar to M . The new model is
initialized with the parameters θ0 as far as possible, since the architecture is no longer
exactly the same. To be more precise, a large subset θ′0 ⊆ θ0 plus randomly chosen
weights are used to initialise the new model. We obtain Mθ1 , where θ1 = θ′0 ∪ θrandom.
The new model Mθ1 is then trained on new training data D1.
In practice, one usually uses a state of the art model, which was set up by experts and
trained on a lot of data. Adaption to the task specific data is usually made just for the
last layer, which means that the last layer is replaced with a layer, which has as many
neurons as classes one wants to predict. For training on new data, all weights but the
ones for the last few layers are frozen. This way, one can retrain huge state-of-the-art
models with low computational power.

3.3 Active learning task
For the active learning task [2], we are given an unlabeled data set D = {(xi)} of size n
for which labels can be obtained from human annotators. The human annotators can
label a fixed number k of samples D′ ⊂ D. The labels {(yk)} together with the respective
samples are then used for training a model M . We want the annotators to label the
subset that leads to the best performance of model M . The hyper-parameters of the
model are not changed. In fact, we do not even have access to them in our project set
up. We can observe the output of the model, but not its internal workings. The output
of a neural network model are the values of the last layer. We refer to this output also
as annotation vector. When using a softmax activation function in the last layer, the
annotation vector has only non negative values which add up to one. Hence we can
interpret the annotation vector as the confidence probabilities in Equation 3.1.
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CHAPTER 4
Methods

In this chapter we present and discuss various approaches for Active Learning. Every
approach has a different intuition behind it, which we will explain.

4.1 Score calculations

We start off with score calculations. By score calculations we mean that we calculate a
score for every sample individually. The n top scoring samples are chosen, annotated
and used for training. The scores are calculated from the annotation vectors, i.e. the
output of the last layer of the neural network model. The output of the last layer are
the probabilities that give the confidence of membership of a class i.e. the confidence
probabilities from equation 3.1.

4.1.1 Random selection

Random sampling is the trivial approach, where we select a random subset of all samples.
It serves as a baseline when answering the question if Active Learning can help to reduce
the number of required training samples.

4.1.2 Least confident

The idea of least confident [2, 7] is that we chose the sample x for which the models
confidence probability is the lowest:

fLC(x) = 1− pM (ŷ | x), (4.1)

where ŷ = argmaxy pM (y | x). The intuition behind it is that the model needs to be
trained on the samples for which it is most uncertain.

13



4. Methods

4.1.3 Margin sampling

While least confident only considers the confidence probability of the least confident class,
margin sampling [2, 7] considers the confidence probabilities of the most confident and
second to most confident class. If these two probabilities are very close, we want to use
this sample for retraining, since there is a high chance of confusing these two classes.
The formula is as follows:

fMS(x) = 1− (pM (ŷ1 | x)− pM (ŷ2 | x)), (4.2)

where ŷ1 and ŷ2 are the first and second most confident classes.

4.1.4 Entropy

While margin sampling considers two probabilities, we discard a lot of information,
especially when we deal with many classes. An approach that considers the confidence
probabilities of all classes is entropy [13, 2, 7]. The formula for calculating entropy of a
prediction vector is

fE(x) = −
∑
i

pM (yi | x) log pM (yi | x). (4.3)

The more similar the class predictions are, the higher the score and vice versa. The
entropy for equally distributed confident probabilities is one and zero for a prediction
which is 100% confidence for one class.

The next two methods are our contribution and are not mentioned in the literature as
far as we know.

4.1.5 Mutual info score

By interpreting the output of the model as a probability distribution, we can use
(statistical) divergences to measure distances between two predictions. One of them is
the so called Kullback-Leiber divergence [18], which is defined as follows:

KL(P,Q) =
K∑
k=1

P (k) log P (k)
Q(k) . (4.4)

While Kullback-Leiber divergence and mutual information are closely related, they are not
the same. Even though we use Equation 4.4 for our method, we call the method mutual
info score. We define the mutual information score as follows: We obtain the uniform
distribution of equally confident class predictions and then calculate the Kullback-Leiber
divergence with the real prediction probability distribution. In mathematical terms the
score is defined as

fMI(x) = −KL(P (x), Q), (4.5)

where P corresponds to the probability distribution of the predictions of sample x and Q
to the uniform one. In Q every class is predicted with probability 1

K with K being the

14
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number of classes. The idea behind this method is to measure how similar the predictions
are to the useless prediction of equally predicted classes. The more similar the predictions
are to the useless prediction, the higher the score of the corresponding sample. That is
why we have a minus sign in Equation 4.5.

4.1.6 Difference uniform score

The idea behind the difference uniform score is the same as for the mutual info score
method. We want a score, which indicates how similar the prediction is to a useless
or uniform random prediction. Here, we just take the pairwise difference between each
prediction and the useless prediction, and sum them up:

fDU (x) = −
∑
i

∣∣∣∣pM (yi | x)− 1
K

∣∣∣∣ , (4.6)

where K is the number of classes. Once again we negate the sum, such that predictions
which are very close to the useless prediction score higher.

4.2 Subset selection
While score calculations are straightforward and computationally inexpensive, they have
one big drawback. They are calculated individually for each sample, which means that
they do not consider other samples. The information and relation between samples is
lost when viewing the samples independently from each other. To overcome this problem,
we reformulate our task: We do not want to find the samples, but the optimal subset
that leads to the biggest improvement of performance.

4.2.1 Equal pseudo classes

Based on the idea that each class should be represented by an equal number of samples
in the subset, we make use of the notion of a pseudo class [11] and introduce the equal
pseudo classes method. A pseudo class yM is the class, which the model predicted, so:

yM (x) = argmax
k

pM (y = k | x), (4.7)

where pM (y = k | x) is the prediction vector of the sample x. Regardless if the prediction
is correct or if yM (xi) 6= yi, we use the pseudo classes to produce a subset which is
balanced out with respect to its pseudo classes. For that, we determine the smallest
pseudo class, which is the smallest number of samples belonging to the same pseudo class
and take the same number of samples from all other pseudo classes in our subset. In case
we did not reach our desired size yet, we add random samples. In case we exceeded our
desired subset size, we only take as many samples as we need, but an equal number from
each pseudo class. We randomly discard superfluous samples in this case.
This method builds on a single and very strong assumption, namely that classes are of
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equal size. Since this assumption does not hold in most real scenarios and the pseudo-
classes do not coincide with the real classes, we discard this method and do not use it in
our experiments.

4.2.2 Vector norm

This method is our contribution and the idea behind it is to choose the subset of fixed
size, for which the predictions are most far away from each other. To measure a distance
between two predictions we use the L2 norm:

‖pm(xi), pm(xj)‖ =
K∑
k=0

√
|pm(xi)k − pm(xj)k|2. (4.8)

We fill up our set with samples xi and xj , for which the norm is greater then all other
pairwise norms, until we reach our desired set size. The intuition behind this is that we
include samples from various different classes in our subset. Since we do not know the
classes a priori, we have to rely on the predictions of the model. This approach might
work well when the model makes good predictions already.

4.2.3 Structural similarity for diversity

Next we want a subset of samples which is diverse. The intuition is that the more
unsimilar the samples are, the more the model is going to learn about the concept of
classes. If we want the model to learn a class “invoice” for example, we do not want to
have invoices from only one company in our training samples, but rather invoices from
different companies and in different formats. To achieve this, we do not only consider
predictions, but also samples itself. Since we implicitly already defined diversity as the
inverse of similarity, we need a similarity measure for our samples, which are pictures.
We choose the so called structural similarity [38] as one of the most famous measures.
Structural similarity or the structural similarity index is calculated over windows of the
images. The formula for calculating the structural similarity index is a product composed
of luminance, contrast and structure of the image. With a suitable choice of parameters
the structural similarity index has the following form:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2
xµ

2
y + C1)(σ2

x + σ2
y + C2) , (4.9)

where

• µx is the mean of x,

• µy is the mean of y,

• σ2
x is the variance of x,

• σ2
y is the variance of y,
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• σxy is the covariance of x and y,

• C1 and C2 are variables to stabilize the fraction in case of small denominators.

Since the computation for structural similarity between two images is expensive, we do
not compute the values for every two samples, like we did it for the metric span in Section
4.2.2. We rather want to have diversity in the different classes. For that we consider
all samples that belong to the same predicted class or pseudo class and calculate the
structural similarities for these. We then fill up our set with samples xi and xj , which
have the lowest structural similarity between each other. We further try to balance out
the classes by taking an equal number of samples from each pseudo class. If we run out
of samples, we add randomly chosen samples.
We note that this method belongs to a setting where the internals of the machine learning
model are unknown but the samples are accessible. Since this is not the case in the
K.Rex project, we did not use this method in our experiments.

4.2.4 Contextual diversity

The crucial observation of [11] is, that “[a models] misclassification is not simply attributed
to the objects from the true class, but also to other classes that may appear in the object’s
spatial neighborhood.” The idea is to find a set of samples which is diverse with respect
to the spatial context responsible for misclassification. In our black box setting, we do
not have access to the weights describing spatial context, but only to the confidence
probabilities. Therefore we adapt the proposed approach from [11] to our case.
The authors assume a model which outputs predictions for regions r of images as
pr(y = k | x) = pr for each class k = 1, ...,K. Ik ⊆ D is the set of samples, where for
each sample at least one region is classified in class k and D = {(xi)} is the unlabeled
data set. Within a single sample x ∈ Ik the set of regions that are classified as class k
is denoted by Rkx. The collection of all regions with pseudo class k is Rk =

⋃
x∈Ik Rkx,

which is assumed non-empty for a large number of samples. The class-specific confusion
is defined as follows:

P kD := 1
|Ik|

∑
x∈Ik

[∑
r∈Rk

x
ω(pr)pr∑

r∈Rk
x
ω(pr)

]
, (4.10)

where ω(pr) = −
∑
k pr(k) log pr(k) + ε and ε > 0, the Shannon entropy (Equation 4.3)

plus a small constant. Equation 4.10 calculates the class-specific confusion for the whole
data set. To compute the mixture for a single sample x the Equation is reduced to:

P kx =
∑
r∈Rk

x
ω(pr)pr∑

r∈Rk
x
ω(pr)

, (4.11)

where pr depends on x. In the case where only overall predictions are available, as
opposed to predictions on regions of samples, formula 4.11 is equal to the prediction
vector p(x) = pM (y = k | x) itself.
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For two samples x1 and x2 we can now calculate the pairwise contextual diversity as:

d(x1, x2) = 1
2KL(P kx1 , P

k
x2) + 1

2KL(P kx2 , P
k
x1), (4.12)

where KL is the KL-divergence from Equation 4.4. Note that the pairwise contextual
diversity is only defined for samples which have the same pseudo class. This is due to
the fact that we derived it from the class specific confusion 4.10. For samples which do
not belong to the same pseudo-class we define their pairwise contextual diversity as zero.
So in our case the distance measure boils down to:

d(x1, x2) =
{1

2(KL(p(x1), p(x2)) +KL(p(x2), p(x1))), if x1 and x2 same p.c.
0, otherwise,

(4.13)

which is the symmetric KL-divergence of the predictions.

4.2.5 Cosine distance

A well known similarity measure used in information retrieval is the cosine similarity
[39]. Let v and u be two non-zero vectors, then the cosine similarity is the cosine of the
angle θ between the two vectors:

similaritycos(v, u) = cos(θ). (4.14)

With the dot-product and the L2 norm we obtain the cosine of the angle θ from the two
vectors as

cos(θ) = v · u
‖v‖‖u‖

. (4.15)

The cosine similarity has the nice property, that it is 1 for when v and u are the same
vector and 0 for when they are orthogonal to each other. Since we interpret distance as
the opposite of similarity, we define the cosine distance as

dcos(v, u) = 1− v · u
‖v‖‖u‖

. (4.16)

The two vectors u and v are the class predictions pm(xi) and pm(xj) in our case.

4.3 Distance Matrices

The problem of selecting a subset of size k from a super set of size n in order to minimize
some norm is NP-complete [40]. To avoid solving this problem, we utilize the fact that
Equations 4.8, 4.16 and 4.13 are symmetric distance measures between samples (i.e. their
predictions). Symmetric means that for a distance d the equation

d(xi, xj) = d(xj , xi) for all i, j ∈ {1, ..., N} (4.17)
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holds. By calculating the distances between all samples, we obtain a symmetric distance
matrix of size number of samples:

D({(xi)}) =


0 d1,2 d1,3 ... d1,n
d2,1 0 d2,3 ... d2,n
d3,1 d3,2 0 ... d3,n
... ... ... ... ...
dn,1 dn,2 dn,3 ... 0

 . (4.18)

The score we attribute to one sample is the accumulated distance, which this particular
sample has to all others. For example the score for the sample with id 2 would be the
sum of all yellow marked entries in the following distance matrix:

D({(xi)}) =


0 d1,2 d1,3 ... d1,n
d2,1 0 d2,3 ... d2,n
d3,1 d3,2 0 ... d3,n
... ... ... ... ...
dn,1 dn,2 dn,3 ... 0

 . (4.19)

By this means, we obtain scores for every sample. If we want a subset of a given size n,
we can sort all samples with respect to their scores and take the top n ones.
We utilize the effectiveness of using a distance matrix, which lies in O(n2) (with n being
the number of samples) over a subset selection. Based on the three distance measures
introduced in Sections 4.2.2, 4.2.5 and 4.2.4 we define three methods, which are

• Vector Norm method with L2 norm (Equation 4.8) as distance measure,

• Diversity Score method with contextual diversity (Equation 4.13) as distance
measure and

• Cosine distance method with cosine distance (Equation 4.16) as distance measure.

To calculate the distance matrix we use Algorithm 1. Note that we start the second
for-loop from the subsequent prediction vector of the current prediction vector. This is
due to the properties of the distance functions: The symmetry gives us the possibility to
ignore the lower triangular matrix and the property of two vectors having zero distance
saves us this calculation step as well.

4.4 Adaptive methods
Until now, we used static methods to calculate the importance of a sample for retraining.
In this section, we explore adaptive methods. The general idea of the following methods
is to learn how the classifier learns. For this meta learning task, the methods use their
own simpler machine learning algorithm which we call oracle or agent in this context.
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Algorithm 1 Distance matrix method
Require: Ordered list of prediction vectors [pM (xk)]k=1,...,N of samples made by model
M , symmetric distance measure d, empty score list s = [0, ..., 0] of length N
for piM in [pM (xk)]k=1,...,N do

for pjM in [pM (xk)]k=i+1,...,N do
dcurrent ← d(piM , p

j
M )

s[i]← s[i] + dcurrent
s[j]← s[j] + dcurrent

end for
end for
return samples ordered by score list s

4.4.1 Contextual Multi-Armed bandit

In general, a Contextual Multi-Armed bandit describes the problem of choosing an action
from a possible set of actions, based on a given context in order to maximize the payoff
for all chosen actions [24]. The payoff for individual actions is not known before choosing
the action and depends on the context. After choosing an action, the payoff is revealed.
It is easy to see how this problem adapts to our use case: Here, the context is the
samples we want to classify, the class predictions or both. The actions that can be
chosen correspond to retraining the classifier with a chosen sample. The payoff is the
improvement of the classifier, when trained on a sample. Since there is no known method
to know a priori how the classifier will improve, we can only reveal the payoff to the
Multi-Armed bandit oracle after retraining with a chosen sample.
The oracle is a machine learning regressor which is trained on the context and payoffs. In
more detail, the regressor gets the context (either samples or/and predictions of samples)
as input and the corresponding improvements as target values. Choosing an action is
realized by predicting the improvements of all not yet annotated samples and then taking
the one with the highest expected improvement. The action consists of annotating the
sample and retraining the classifier with said sample. The improvement is measured and
(together with the sample) provided as feedback to the oracle. The idea is that with more
and more context/improvements pairs the oracle learns to predict the improvement of a
potential training sample more accurately. We note that instead of choosing individual
samples and using them for retraining the classifier, the oracle chooses batches (top n
samples) in practice.
In the beginning of the process, the predictions of the oracle are not very good, since the
oracle was not yet trained or only trained on few context/improvements pairs. To overcome
this issue we chose a random action if the expected payoff is smaller than a defined
threshold, i.e. we take a random sample for retraining, if the expected improvement
for the top sample is smaller than the threshold. The threshold is decreased with every
iteration, since the set of samples to chose from is getting smaller as well [26].
If we want individual scores assigned to samples, we predict the expected improvement

20



4.4. Adaptive methods

of all training samples and use this value as the score.

4.4.2 Reinforcement learning

Reinforcement learning [30] usually deals with an agent, which has to chose actions A ∈ A

in an environment in order to maximize some numerical reward R ∈ R. The environment
consists of states S ∈ S. The revelation of the reward is immediate and the choice of an
action influences the environment. Indexing states, actions and rewards by time-steps
t = 0, 1, 2, ... we obtain a sequence

S0, A0, R0, S1, A1, R1, S2, A2, R2, ..., (4.20)

which the agent goes through.
The reward is based on a policy π, which is defined beforehand. The policy depends on
the action and the environment. Since every action influences the environment, the same
actions can lead to different rewards when executed in different states of the environment.
This is extremely important when dealing with long term rewards, which might be
received after a long series of actions with low or even negative rewards. In order for
the agent to explore long term rewards usually a so called discount factor is used which
reduces early rewards.
A finite sequence (Equation 4.20) of consecutive states, action and rewards is called an
episode, which is fixed by a maximal number of time-steps or by reaching a desired goal,
i.e. a desired state of the environment. For every action in the episode the reward is
received and reinforced, such that the agent learns a mapping from actions to rewards.
In the first episodes we do not expect the agent to make good decisions. We rather want
the agent to explore the environment in the beginning. For that we let the agent choose
a random action with a certain probability, which gets smaller after every episode.

Reinforcement learning for training sample selection

In the context of our active learning task we refer to the agent as oracle. The oracle
chooses an action A from a set of actions A of size two:

A ∈ A. (4.21)

The set of actions A consists of: the label should be predicted by the machine learning
model or the label should be given by a human annotator. While we can expect the
human annotator to give the correct label y, the label predicted by the machine learning
model yM might not be the correct one. The environment which the oracle perceives
is the images with the prediction of every image or just the predictions. In the case of
asking the human annotator for the correct label the reward Rrec is negative and small.
When asking the machine learning model for the label, the reward Rcor is positive and
high if the machine learning model predicts correctly. When asking the machine learning
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model for the label and the prediction is wrong, the reward Rinc is negative and high.
Summarized the reward R is the following:

R =


Rrec, if a label is requested
Rcor, if ml model predicts and yM = y

Rinc, if ml model predicts and yM 6= y.

The oracle itself is a regressor, which makes two continuous predictions when presented an
instance of the environment. The first one is the expected reward when asking a human
annotator, the second one is the expected reward when asking the machine learning
model. The action which the oracle chooses, is evaluated by taking the option with
the highest expected reward. To be more precise, the oracle receives a sample and the
prediction of the sample (or just the prediction in the case of black box training sample
scenario) and predicts the expected reward for both actions. The action is chosen and
the real reward for this action is obtained. The decision is reinforced by retraining the
regressor with the sample (and/or prediction of the sample) and the reward pairs for
both action options. The reward pair consists of the predicted reward for the option
which was not chosen and the real reward for the option which was chosen. In our use
case the actions of the oracle do not influence the rewards of future actions. While we
use the predictions of rewards to chose an action, which leads to retraining the machine
learning model and in the best case to better predictions of said model, the action if
we chose to ask the human annotator or the machine learning model do not change the
reward of a future action directly. In other words, asking the human annotator or the
machine learning model for the label of a sample does not influence the reward for the
same decision for another sample in the future. For that we omit the discount factor
described earlier in Section 4.4.2.

Human method and model method

The oracle from Section 4.4.2 predicts two things: The expected reward when asking
the human annotator and the expected reward when using the machine learning model
for labeling a sample. In a stream based approach we would take the option with
the highest reward as we described before. When dealing with a pool of unlabeled
samples we have more options to make use of the oracles learnings. Namely we can
assign two scores to each sample in the pool. The scores correspond to the expected
rewards for asking either the human or the model for the prediction. For choosing an
Active Learning batch we order the samples with respect to their expected reward for
asking the model. The top-n samples make up the Active Learning batch. We call
this approach the Oracle Model method. When ordering the samples with respect to
the expected reward when asking the human, we take the top-n samples as well, but
start with the sample with the lowest score. This is due to the fact, that we want
to minimize the reward for asking the human annotator and maximize the reward for
asking the machine learning model. We call the latter approach the Oracle Human method.
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4.4.3 Regressor

Both methods described in Section 4.4.1 and 4.4.2 are built around an oracle, which is a
regressor [35]. The regressor in the Contextual Multi-Armed bandit context learns and
predicts the improvement of the machine learning classifier directly. The regressor in
Reinforcement learning learns and predicts rewards for the decision human annotator
vs. machine learning model based on a defined policy. The input for the regressor can
be either the sample plus the prediction of the sample by the machine learning model
or just the prediction of the machine learning model of the sample. In the first case,
we call the oracle algorithm a dual-regressor and in the second case a mono-regressor.
The mono-regressor only receives a probability vector of length number of classes. For
that case we can use any trainable regressor like Random Forests or (deep) neural nets.
The dual-regressor receives two-dimensional images plus the probability vector of length
number of classes. For the first input channel we introduce convolutional layers, which
we describe in more detail in Section 5.2.1. These layers (together with layers of other
types) will break the images down to a vector. The vector is concatenated with the
second input channel, which is the probability vector. The result of this operation is fed
into a neural net with the desired output dimension. Mono-regressors are used when we
are dealing with a black box scenario regarding the training data itself. Dual-regressors
can be used when only the machine learning model is unknown to us. The multi-channel
dual regressor we used for our experiments can be seen in Figure 4.1. The left channel is
used to process the images in convolutional, pooling and drop-out layers, while the right
(short) channel just serves as an input for the prediction vectors. The final convolutional
layer is flattend and concatenated with the input from the right channel. This high
dimensional vector is then send through a series of dense and drop-out layers until it
reaches the final output layer with two neurons, corresponding to the expected reward
for the two possible decisions.

4.4.4 Epsilon Greedy training

As machine learning algorithms the mono and dual regressors from Section 4.4.3 require
training. To train the regressor and make use of reinforcement learning we use algorithm
2, ε-greedy for oracle training. The algorithm describes the sequence in Equation 4.20 in
more detail. The states St from the sequence correspond to the prediction of the samples
by the model M in case of a mono oracle and the prediction of the samples by the model
M plus the samples themselves in case of an dual oracle. We highlighted the difference of
input in Algorithm 2 in red. The actions At correspond to the decision the oracle makes,
while the revealed reward Rt is based on the reward policy π. The oracle is initialized
randomly at the beginning so we do not expect it to make good decisions which maximise
the reward. Due to that we let the decision be random with a certain probability ε. The
name giving ε parameter is initialized with 0.5 at the beginning, which means that the
oracle’s decision is random with 50% probability. With every episode we decrease ε, such
that the probability for a random decision gets smaller. This is realized by the decay
factor, a number below 1, which gets multiplied with ε in each episode. The probabilities
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for the random decision itself do not change and are equal for both options. In case the
decision is not random it is based on the predicted rewards of the oracle. The option
with the higher expected reward is taken. The shift from random decisions to decisions
made by the oracle is known as exploration to exploitation [30].
After the reward is obtained a sample we retrain the oracle with a reward tuple as target.
The reward tuple consists of the received reward for the option which was taken for the
respective sample and the predicted reward for the option which was not taken. We
denote the latter reward with r¬ decision.
In order to reveal the reward to the oracle we need annotated samples. Since we chose
a pool based approach we do not annotate the samples which the oracle predicts the
highest reward for but a set of samples. Consequently we use Algorithm 2 every time we
obtain new annotated documents in order to retrain the oracle. In our experiment set
up we use ε-greedy after the initial fine tuning of the machine learning model and after
every round of Active Learning. The two Active Learning methods oracle model and
oracle human method from Section 4.4.2 always use the most recently trained regressor
as an oracle.

4.5 Summary
The methods we deploy can be categorized into three families: Score calculations,
distance matrices and adaptive methods. The score calculating methods calculate scores
for individual samples. The n highest scoring samples are chosen by the methods. The
distance matrices methods calculate the accumulated distance of each sample to all other
samples. The n most furthermost samples are chosen by the methods. As far as we are
informed a usage of a distance matrix in such a way for Active Learning was not yet
mentioned in the literature. The adaptive methods use a regressor oracle to predict a
score. The score is either the expected improvement or an expected reward. Based on
that score the top n samples are chosen by the methods.
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Algorithm 2 ε-greedy for oracle training
Require: model M , oracle O, reward policy π = (Rrec, Rcor, Rinc), samples
reward R← 0
ε← 0.5
decay factor ← 0.999
for all episodes do
ε← ε · decay factor
for all samples do

prediction vector pM ←M predicts classes for sample
if random number between 0 and 1 < ε then
decision ← random

else
(rmodel, rhuman)← O predicts rewards for both options on base of (pM , sample)
decision ← option with higher reward

end if
if decision is to go with M ’s prediction then

if M ’s prediction is correct then
R← R+Rcor

else
R← R−Rinc

end if
else
R← R−Rrec

end if
(r¬ decision, R)← obtain reward tuple
O ← retrain O on (pM , sample) as input and (r¬ decision, R) as target

end for
end for
return trained oracle O
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Figure 4.1: A multi-channel regressor with Convolutional and Dense layers
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CHAPTER 5
Experiment Set Up

We carry out experiments to test and compare the different methods described in Chapter
4. The experiments are done on two different data sets, both consisting of documents.
The first data set is a publicly available data set, the second data set consists of non-
public documents, obtained during a legal investigation. While we are able to access
the documents in the first case, this is not possible for the second case. The (machine
learning) task we want to solve is the same for both data sets: To classify documents
into classes in a supervised fashion. The machine learning algorithms we use to solve
this task are different for both data sets. We describe in detail how the experiments are
set up in the following sections.

5.1 Data sets

To our knowledge there exists only one publicly available document data set suitable
for machine learning, which is the Tobacco data set [41]. The real data we use in our
experiment was obtained during a legal investigation and annotated by a team of legal
experts, developers and the author during a designated annotation session.

5.1.1 Tobacco

The Tobacco data set [41] consists of “[...] approximately seven million documents
(roughly 40 million scanned pages in TIFF format) [which] became public through
legal proceedings against five US tobacco companies and two tobacco industry research
institutes” and “were scanned by the tobacco industry using diverse technologies” [41].
For our experiments we use a subset of the original Tobacco data set, which is called
Tobacco3482 [42]. With 1,7 GB it is significantly smaller than the original data set,
which takes up 1.5 TB on a hard drive [41]. The small size allows to train and retrain
different classifiers and to try out various methods on it, all relatively fast even with low
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computational resources.
Tobacco3482 consists of 3.492 black and white jpg images. The images are classified
into ten classes, which are: ’ADVE (advertisement)’, ’Email’, ’Form’, ’Letter’, ’Memo’,
’News’, ’Note’, ’Report’, ’Resume’, ’Scientific’. In Figure 5.1 we see three example images
from different classes.

Figure 5.1: Three images from the classes ’ADVE’, ’Memo’ and ’Scientific’ (from left to
right)

For the experiment we split the data set into three parts. The first part is used for
initial training of the machine learning classifier, the second part is used for testing
the performance of the classifier and the third part is used to carry out the active
learning experiments described later in Section 5.3. The distribution of classes is balanced
throughout all three parts. The splitting into the three parts is random, which is
realized by shuffling the data set before splitting. We state the split for each experiment
individually.

5.1.2 Real Data

In the scope of the K.Rex project a data set was created. The data set consists of
documents of a legal person. Since the documents are coming from a real use-case , we
refer to this data set as real data opposed to the Tobacco data, which is mostly used
in academia. The documents themselves are not known to us and only accessible by
the machine learning algorithm, which we describe in Section 5.2.3. We know that the
documents consist of digital documents and scanned paper documents which also include
handwritten text. All documents are OCRed, which is important for textual machine
learning models. We assume that the documents were collected randomly and we know
that the documents are unlabeled. Since a supervised approach was chosen in the K.Rex
project, we require labeled documents for the machine learning algorithms to be able to
learn. While the idea is, that Active Learning will reduce the labeling effort, the methods
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and the machine learning model itself were not ready when it came to labeling the data.
The labeling was done in so called annotation sessions. The annotation sessions took
several days and included experts from the legal domain, law enforcement and developers.
The goal of the annotation sessions was to label the documents into one of 34 predefined
classes. The total number of documents is 4057. We note that there was a second task
achieved in the annotation session, which was the labeling of individual segments of
the documents. Recognising segments and classifying them into predefined categories is
outside of the scope of this thesis.

5.2 Machine Learning Algorithms
In order to classify the documents, we use state of the art machine learning algorithms.
For the public data presented in Section 5.1.1 we use a so called Convolutional Neural
Network, which only considers the visual aspects of the images. For the real data
presented in Section 5.1.2 a multi-modal approach is used, which considers visual and
textual information, when solving the task of classification. The multi-modal approach
was developed by project partner RSA FG.

5.2.1 Convolutional Neural Network

When dealing with image data the number of features is extensive. Typically an image
comes as a two dimensional array with three colour channels. Simply connecting all
those values (pixels) in a fully connected manner throughout several layers, would lead
to an extensive amount of parameters. To overcome this problem Convolutional Neural
Networks (CNNs) exploit the fact that “images have a strong 2D local structure: variables
(pixels) that are spatially nearby are highly correlated” [43]. For the general architecture
of CNNs three ideas are utilized:

• Local receptive fields

• Shared weights

• Sub-sampling.

Local receptive fields: Each neuron in a layer receives a convoluted input from a set of
units from the previous layer, which are located in a small neighbourhood. Typically
these neighbourhoods are defined as quadratic sets of pixels.
Shared weights: Visual artefacts, like edges, corners and end-points usually occur on
several locations on the image. For that, a convolutional layer consists of different planes
made up by units. The units in a plane share all the same weights and their output is
called a feature map. That means, that one plane extracts the same features all over the
image. The planes themselves have different weights, which leads to the extraction of
different features. All in all a convolutional layer extracts different features of every part
of the image.
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Sub-sampling: After detecting a feature, the exact location of the feature is not important
anymore. We even want to avoid the network to learn the exact location of features,
because the location may vary for different instances from the same class. In order for
the network to not learn the exact position we reduce the spatial resolution of the feature
maps. In order to achieve this blurring we could average over sets of pixels and exchange
the set with the obtained average value. Another method would be exchanging the set
with the maximal value.
For general Convolutional Neural Networks, the first two ideas are manifested in the
name giving convolutional layers. So called pooling layers implement sub-sampling. The
classification happens in fully connected layers which come after the convolutional and
pooling layers. An example of an architecture is shown in Figure 5.2.

Figure 5.2: An example architecture of a CNN from [43] for digit recognition

Inception Network

For our experiments we use a pre-trained inception network [44]. An inception network
is an extension of an ordinary Convolutional Neural Network described in Section 5.2.1.
Instead of convolutional layers an inception network has inception layers. Inception
layers contain several convolutions of different size and typically a pooling block [45].
An example of such an inception layer is visualized in Figure 5.3. The intuition behind
this architecture is “visual information should be processed at various scales and then
aggregated so that the next stage can abstract features from different scales simultaneously”
[45]. The convolutional blocks can be trained in parallel. The outputs of the building
blocks are then concatenated and passed to the next layer.
It is easy to see that the output of a naive inception layer has a very high dimension,
resulting from concatenating several building blocks. In order to avoid a model with too
many parameters, dimension reduction is applied. The dimension reduction is realized by
1× 1 convolutions. By using a lower number of filters then in the layer before the 1× 1
convolutions reduce the number of filters while keeping the same spatial dimensions. A
schematic visualisation of this process can be seen in Figure 5.4.
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Figure 5.3: An inception module from [44], where different convolutions process informa-
tion in parallel

The final inception model from [45] is set up with two pure convolutional layers and
nine inception layers. For our purpose we use transfer learning as described in Section
3.2 to adapt the inception network to our data set and task. For that we exchange the
top layers of the original model with two fully connected relu activated layers with 64
neurons each. For the last layer we use a dense layer with ten neurons representing the
ten classes from our data set described in Section 5.1.1. Here we use softmax activation,
such that the outputs are interpretable as prediction probabilities, which sum up to one
and are non-negative. We end up with 21,938,730 parameters, which are optimized during
training. We note that all but the new top layers have pre-trained weights. The new top
layers are initialized with random weights. For that we freeze all pre-trained weights and
only train the top layers on the new data. After that we unfreeze the remaining weights
and train the whole network.
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Figure 5.4: Left: Naive Inception module, right: Inception module with dimension
reductions from [45]

5.2.2 Model training

The presented models are all machine learning models which require training. The
training of a machine learning model aims to optimize the parameters of the model
in such a manner that the error of the predictions is minimized. Since we are dealing
exclusively with neural network models here, the parameters of the models are the weights
between the neurons. We use weights and model parameters interchangeably.

Loss function

In order to measure the error of a prediction we need a loss function. The loss function
we use here is cross-entropy:

LCE = −
k∑
i=1

yi log(pi), (5.1)

where yi is the true label, pi the confidence probabilities from Equation 3.1, for the i-th
class. A prediction with a high probability for the correct class leads to a small loss while
a bad prediction, where the probability is small for the correct class leads to a high loss.
The overall loss function

LCE(w) = 1
n

n∑
i=1

LCE(w)i (5.2)

is calculated from the losses of all n training samples. Note that in Equation 5.1 the
confidence probabilities depend on the weights w, hence the overall loss function in
Equation 5.2 depends on the models parameters as well. Our objective is to minimize
the overall loss function for all training samples, so

min
w

LCE(w). (5.3)

Optimization

In order to minimize the loss function for a model, we optimize the weights of said model.
This is done by so called mini-batch optimization. While we are using batches of samples
for our Active Learning experiments, we divide these batches into smaller, hence mini,
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batches which we feed into the network. We then use all samples of these mini-batches
to update the weights in order to achieve the objective. The procedure, also known as
Stochastic Gradient Decent (SGD) [46, 47] in its standard form, is as following:

• calculate the gradients ∇LCE(w)

• update weights via w = w − η∇LCE(w).

This procedure is repeated for a fixed number of rounds, called epochs. The parameter η
is the learning rate and regulates the size of "steps" in which the algorithm converges
towards the minima. A high learning rate leads a fast convergence of the model, but at
the same time might oscillate around the minima. There might even be the case that a
training process with a high learning rate diverges. A small learning rate on the other
hand leads to a slow convergence of the model, but is safer in terms of not missing a
minimum. Typically one might adapt the learning rate during training [48].
Apart from adapting the learning rate, there are several other expansions of the SGD
algorithm, which promise even better results [47]. For our training we use the Adam
optimizer, which adapts the learning rate η based on the first-order and second-order
moments of the gradient [49].

Early Stopping

We noted that training was already converging after a relatively small number of epochs.
In order to save computational power we employed so called early stopping [50]. The
idea of early stopping is straight forward. If there is no change in performance, the
training stops. For that, we monitor the performance or the model after each epoch and
compare it with the performance from the epoch before. For the experiments based on
the Tobacco data set from Section 5.1.1, we chose to monitor the accuracy on the held
out test set. Additionally to the performance measure we want to monitor, we set a
patience parameter which is the number of epochs the training continues while there is
no improvement of performance. In our case we set it to 5 epochs. All in all, the training
stops before reaching the maximum number of epochs, when accuracy on the held out
test set is not improving for 5 consecutive epochs.

5.2.3 Multi-modal approach

We describe the basic idea behind the K.Rex multi-modal machine learning approach
developed by project partner RSA FG, as this framework is used in our experiments. The
multi-modal approach aims to classify the documents by two means which are visual and
textual. The visual and textual aspects are both captured by individual machine learning
models. We refer to these models as the visual and text model. The outputs of both
models is combined into a network model which is doing the classification. The output of
the network model is a probability vector of size 34 which is the number of classes. We
refer to the output also as annotation vector or simply prediction. We call the combined
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model Multi-modal model. The Multi-modal model is trained in an end-to-end fashion
on batches of documents. The batches are chosen by our Active Learning methods.

5.3 Experiments
We seek to answer the research questions stated in Section 1.2. In order to answer
these questions we set up an experiment. The experiment design aims to compare the
performance of a machine learning algorithm with different methods for training data
selection. The procedure of the experiment is as follows:

1. Initial fine tuning with initial training batch consisting of randomly chosen samples

2. Base performance estimation with hold out test set

3. Selection of retraining batch with Active Learning method

4. Retraining of machine learning classifier with retraining batch

5. Performance estimation with hold out test set

6. Selection of retraining batch with Active Learning method

7. Continue until all samples were used for (re-)training.

The procedure is repeated for different active learning methods. After selecting a
new retraining batch there are two possibilities for the retraining. Either we only use
the selected batch or we use the selected batch plus all already used samples. Since
computational costs for training a classifier are not a limiting issue in the experiments
and training data is rare, we favour the second option where we accumulate all samples.
The usual procedure to appraise an Active Learning method is to evaluate the Active
Learning method against a random selection of samples. We noted that the random
selection leads to a really random performance of the models for both data sets. A
random performance means that the performance fluctuates too much when comparing
several runs with randomly chosen training samples. One solution would be to average
over a series of random procedures, but this is too time intensive. So we increase the
difficulty level and use the entropy method with the score from Section 4.1.4 as a baseline
and evaluate all other methods against it.
For the outcome of the experiment we can expect three cases. Either an Active Learning
method leads to a better, a worse or to the same performance of the machine learning
classifier. In case of a better performance of an Active Learning method over a baseline
selection of training samples, we can answer the research questions. This is done by
giving the delta of samples which is needed to reach the same performance level when
using the worse performing random or entropy selection method. To give a delta we fix a
minimum accuracy which we want to achieve with our model. We then just look for the
number of training samples needed to achieve that accuracy, for different Active Learning
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methods. To give a data set independent value for delta we give the relative difference
instead of the absolute value. We answer the first research question in the form: “To
achieve an accuracy of x % we need ∆rel % less training samples when using Active
Learning method y instead of no Active Learning method (or the entropy method)”. For
a visualisation of this difference in numbers of training samples needed, see Figure 5.5,
where we plotted two training processes.

Figure 5.5: Delta of samples which are needed to achieve the same performance when
using passive learning over Active Learning

5.3.1 Active learning for Transfer Learning

We do not train our machine learning algorithm from scratch but rather make use of
pre-trained weights. This process of transfer learning, as described in Section 3.2 is often
used to adapt a classifier from one domain to another. For our experiment based on
the public documents for example, we apply a pre-trained Inception Network which was
trained on the data used for “The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)” [45]. The ILSVRC data set is composed of images from image hosting services
like Flickr [51]. The domain we are interested in is (legal) documents. While we can safely
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assume that pictures of documents are part of the ILSVRC data set, we still experience
a domain shift here.
It is possible to use active learning for Transfer Learning as well. This is realized by
choosing the training data for the new domain with Active Learning methods. If we want
to evaluate our Active Learning methods for the transfer learning part of our experiment
we simply adapt the split of the data set to 0% for initial fine-tuning. This way, we
start with a classifier from a different domain than our target domain and with random
initialized last layers. We expect the classifier to learn fast on the new data, especially
when the data is selected with Active Learning methods.
We note, that in the case of the real data the initial fine-tuning split is not exactly 0,
but 0.05%. This is due to the software architecture in the K.Rex project. In order for
the model to be initialized it needs a minimal number of training data. For consistence
reasons we chose the same setting for the public data set experiments as well.

5.3.2 Active learning for Fine-Tuning

After adapting a classifier to a different domain using Transfer Learning, the Fine-Tuning
phase begins. Fine-Tuning in this context means that we train the classifier on increasing
amounts of data. The difference here compared to the situation where we use Active
Learning for Transfer Learning is that the initial fine-tuning batch is non empty. We recall
that the initial fine-tuning batch consists of randomly chosen samples in this scenario.

5.4 Technologies and Settings
We specify the technologies used to carry out our task and the experiments attached to it.
In general, the implementation was done with Python version 3. The machine learning
algorithms were set up with the keras/tensorflow frame work. Training and retraining
of the CNN model in Section 5.2.1 for the public data set were carried out on a GTX
1080 TI. Training was initialized with 100 epochs and with the early stopping mechanism
described in Section 5.2.2.

5.5 Summary
We run two different experiments to evaluate the different Active Learning methods. The
first one is done on a public data set with a CNN as a classifier. The second experiment
is done on real data gathered in the K.Rex project and a multi-modal approach which
was developed by RSA FG. The experiments consist of repeated rounds of choosing
training samples based on an Active Leaning method and retraining the classifier with
the chosen training samples plus the previous samples. This is done until all samples are
used for training. By giving the delta of samples a model needs less to achieve the same
accuracy when using an Active Learning method over no Active Learning method, we
can answer the first research question. By comparing the performances of the different
Active Learning methods we can answer the second research question.
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CHAPTER 6
Evaluation

In this chapter we present and discuss the results from the experiments. Before that we
define our evaluation method which we then apply to the results. On top of that we
answer the research questions asked at the beginning of this thesis.

6.1 Evaluation method

To evaluate the different methods against each other, we introduce a measure of the
performance development over the Active Learning rounds. The measure basically
measures the relative increase of performance for each Active Learning round and sums
them up. Since early rounds are more interesting to us we weight each round such that
later rounds contribute less to the measure. We call the measure relative improvement
score and define it mathematically as follows: We fix a pool of samples and do n rounds
of choosing training batches by the Active Learning method of interest and (re-)train
a model on this batch. The n batches have sizes k1, k2, ..., kn and k =

∑n
i=1 ki is the

number of all samples. Let p(ki) be the performance measure of the model after it was
trained on training batch ki. In our case p() is multi-class accuracy Equation 3.3. The
relative improvement score r is then defined as

r :=
n∑
i=1

p(ki)− p(ki−1)
ki

(
k − (

∑i
j=1 ki) + k1

k

)
. (6.1)

In case the overall number of samples k differs from experiment to experiment, the
formula is as follows:

r∗ = 1
k
· r. (6.2)
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Figure 6.1: A perfect training sample leads to a maximal performance of the model

It often makes sense, that the batches have the same size, so ki = kj for all i, j. In this
case Equation 6.1 boils down to

r =
n∑
i=1

(p(ki)− p(ki−1))
(
n− i+ 1

n

)
. (6.3)

The first factor in the sum of Equations 6.1 and 6.3 is the relative change of performance
after training with a new batch of samples. The second factor determines the weights of
the individual batches. For the first batch, the weight is 1. It decreases linearly for every
next batch. The intuition for this score is that a perfect training sample should lead to a
score of 1. A perfect training sample is a sample which, when used for training a model,
increases the performance from 0 to 1 and every consecutive training step would not
decrease the performance. If a model is trained on such a hypothetical sample in the first
round the training would look like in Figure 6.1. The relative improvement score of such a
training development is 1. In general we favour training curves that increase very rapidly
and this at the beginning of the training meaning when trained on the first samples
or batches. In Figure 6.2 we see two training curves where we would favour the blue
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Figure 6.2: Two performance developments

one. Fixing a batch size of one for this example, the relative improvement score is 0.735
for the blue training development and 0.594 for the orange training development. An
Active Learning method which chooses the training samples that lead to the performance
development with the higher score is evaluated as the better choice.

6.2 Public Data set

The experiments on the Tobacco data set from Section 5.1.1 were carried on with the
Inception Network from Section 5.2.1. We fine tuned the network with 5% of the whole
data set which were randomly chosen. After that we ran five consecutive rounds of Active
Learning, meaning that we chose a batch of samples with a designated Active Learning
method and retrained the Inception network on that batch. The initial training and
retraining was initialized with 20 epochs and the early stopping mechanism described in
Section 5.2.2. For all methods, the chosen batches were of the same size such that we can
compare the different methods. The held out test set was made up by 20% of the whole
data set. To avoid confusion we link the methods to the sections where we describe them:
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• Entropy: Score Equation 4.1.4

• Margin sampling: Score Equation 4.1.3

• Least confident: Score Equation 4.1.2

• Mutual info uniform: Score Equation 4.1.5

• Diff Uniform: Score Equation 4.1.6

• Cosine distance method: Distance matrix Section 4.3 with cosine distance Equation
4.2.5

• Contextual diversity score: Distance matrix Section 4.3 with contextual diversity
score Equation 4.13 as distance measure

• Vector norm method: Distance matrix Section 4.3 with L2 norm Equation 4.8 as
distance measure

• RL oracle model: Model method from Section 4.4.2 with a mono regressor from
Section 4.4.3 as oracle which only sees the predictions made by the Inception model

• RL oracle human: Human method from Section 4.4.2 with a mono regressor from
Section 4.4.3 as oracle which only sees the predictions made by the Inception model

• RL dual oracle model: Model method from Section 4.4.2 with a dual regressor from
Section 4.4.3 as oracle which sees the predictions made by the Inception model and
the documents themselves

• RL dual oracle model: Human method from Section 4.4.2 with a dual regressor
from Section 4.4.3 as oracle which sees the predictions made by the Inception model
and the documents themselves.

The methods which are not listed here do not get reported. In particular the methods
working with a regressor predicting the model’s performance change directly as described
in the multi-armed bandit settings in Section 4.4.1 had a too low cost-benefit factor to be
included: In order to obtain a single training sample for the multi-armed bandit solver
we need to retrain the Inception model. The performance of the overall approach did not
justify this effort.
We further note that the RL dual oracle model and RL dual oracle human method are not
applicable in the K.Rex project since our algorithms do not have access to the samples
themselves. Nonetheless we intended to see if we have a benefit if it happened to be that
we have access.

40



6.2. Public Data set

6.2.1 Results

We report the results in numbers and as plotted performance graphs. We include the
results of the entropy method in every table and graph for a baseline comparison. The
original idea of comparing everything against a random choice of samples was dropped
due to the experience we made with the real data. In short, the random sampling method
produces too noisy results that are not suitable for comparison.
The results of all methods can be seen in Figure 6.3. As we can see the performance of
the Inception model differs quite dramatically depending on the method. The absolute
accuracy difference between the best and worst performing method is 36% in the first
retraining cycle. The overall best performance was achieved after the last Active Learning
round with the reinforcement learning method which orders the sample as if we would ask
the model for the label instead of the human annotator. The Inception model achieved
an accuracy of 79% here. In order to get a better understanding, we report every family
of methods on its own.

Figure 6.3: Plotted accuracy on held out test set for Inception model (Section 5.2.1)
when trained on samples chosen by the respective Active Learning method
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Score calculations

The family of score calculating methods calculate a score for every sample individually.
As a side note we call attention to that this fact makes these methods suitable for a
stream-based scenario. The samples with the highest scores are included in the retraining
batches. In Figure 6.4 we see the plotted accuracies of Table 6.1. In the first round the
mutual information uniform method scores 10% higher then the entropy method. In the
consecutive rounds the performances are getting close to each other with least confident
taking the lead for round two and three. Mutual information uniform leads to the worse
performance in the last three rounds. If we look at the relative improvement score in
Table 6.4 we see that entropy performs worse of all score calculation methods. This comes
as a surprise: Margin sampling and least confident only consider respectively two and one
entries of the prediction vector while entropy considers all of them. Under the objective
criteria of the relative improvement score the best performing score calculation method
is least confidence. On the second place we have margin sampling and diff uniform which
have nearly the same score.

Fraction
used Entropy Margin

sampling
Least
confident

Diff
uniform

Mutual info
uniform

0.0 0.15 0.15 0.15 0.15 0.15
0.2 0.23 0.31 0.25 0.29 0.33
0.4 0.6 0.65 0.65 0.6 0.64
0.6 0.7 0.7 0.73 0.72 0.69
0.8 0.76 0.77 0.76 0.76 0.74
1.0 0.76 0.74 0.78 0.77 0.71

Table 6.1: Accuracy on held out test set for Inception model (Section 5.2.1) when trained
on samples chosen by the respective Active Learning score calculating method
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Figure 6.4: Plotted accuracy on held out test set for Inception model (Section 5.2.1) when
trained on samples chosen by the respective Active Learning score calculating method

Distance methods

Like we stated before the best performing method in the first round is vector norm. The
difference between vector norm and entropy is 31% in the first retraining round as we
can see in Table 6.2 and in Figure 6.5. In general the distance based methods perform
significantly better than entropy in the first two rounds. The main difference to the
score calculating methods is that the distance based methods consider the whole pool of
samples for their decision. They chose the samples which have the highest accumulated
distance to all other samples with respect to a distance measure. When the pool gets
smaller and smaller the advantage of these methods vanishes.
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Fraction
used Entropy Cosine distance Contextual diversity

score Vector norm

0.0 0.15 0.15 0.15 0.15
0.2 0.23 0.52 0.36 0.54
0.4 0.6 0.62 0.63 0.63
0.6 0.7 0.64 0.71 0.69
0.8 0.76 0.77 0.71 0.74
1.0 0.76 0.77 0.73 0.74

Table 6.2: Accuracy on held out test set for Inception model (Section 5.2.1) when trained
on samples chosen by the respective Active Learning distance method

Figure 6.5: Plotted accuracy on held out test set for Inception model (Section 5.2.1)
when trained on samples chosen by the respective Active Learning distance method

Reinforcement oracles

The reinforcement oracle methods predict a policy based reward for a decision regarding
every sample. They do this based on previous decisions they made when presented with
samples. The previous samples the oracles are trained on are exactly the samples we
used for transfer learning, so the 5% for initial fine-tuning the Inception model on the
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Tobacco data set. After each Active Learning round the oracle gets retrained just as
the Inception model based on the exactly the same samples. The difference between the
mono and dual oracle is that the dual oracle also gets the sample themselves as an input
additionally to the predictions vectors. In Table 6.3 and Figure 6.6 we see the results of
the experiment with the oracle methods. In the first retraining round we notice that the
RL oracle human method outperforms the entropy method by 7% and the RL dual oracle
model method outperforms the entropy method by 12%. The other two methods lead
to a 4 and 5% worse accuracy then the entropy method. The two dual oracle methods
dominate the performance in round two and three. The mono oracle human method leads
to a drop in accuracy in round 3 of 3%. Under the measure of the relative improvement
score which we see in Table 6.4, there is no clear trend either. We can not say if the
mono or dual methods or the model or human methods are better. We can only conclude
that if we decided to go with a dual oracle we should rely on the rewards for asking the
model and if we went for a mono approach we should chose the rewards when asking the
human annotator.

Fraction
used Entropy RL oracle

model
RL oracle
human

RL dual oracle
model

RL dual oracle
human

0.0 0.15 0.15 0.15 0.15 0.15
0.2 0.23 0.19 0.3 0.35 0.18
0.4 0.6 0.58 0.64 0.64 0.65
0.6 0.7 0.69 0.61 0.73 0.76
0.8 0.76 0.77 0.75 0.76 0.75
1.0 0.76 0.74 0.78 0.79 0.73

Table 6.3: Accuracy on held out test set for Inception model (Section 5.2.1) when trained
on samples chosen by the respective Active Learning reinforcement method
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Figure 6.6: Plotted accuracy on held out test set for Inception model (Section 5.2.1)
when trained on samples chosen by the respective Active Learning reinforcement method

6.2.2 Discussion

In this section we discuss the results from the experiments on the Tobacco data set with
the Inception model as a machine learning classifier and answer the research questions
asked in Section 1.2. In the last two rounds the performance more of less stays between
71% and 79% which means that roughly three quarters of the documents are classified
correctly. We recall that after the last round all documents were used for training at
least once regardless of the method which picked them. Therefore, we focus on the first
rounds of retraining the model. Here we have two dominant distance based approaches
that increase the performance from 15% base performance to more than 50% accuracy
with just 20% of training samples. In comparison entropy achieves 23% accuracy with
20% training samples and 60% accuracy with 40% of training samples. So we can safely
conclude that when the objective is to built a classifier which classifies documents correct
in 50% of cases we can reduce the annotation effort by half by using the distance matrix
method based on either cosine distance or vector norm. If we fix a performance of
minimum 75% accuracy that we seek to achieve with our classifier we can give the delta
of samples we need for that as well. The entropy baseline method leads to a performance
of 75% with 80% of training samples. When using the reinforcement dual oracle human
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method we achieve this accuracy with 60% of the training data. Consequently, we can
reduce the annotation effort by 25% for this target performance. It is clear that learning
methods like the four reinforcement oracle methods increase their performance with more
training samples. Since our ultimate task is to reduce the need for training samples this
realisation does not help much. We will see in the conclusion Section 7 how we could
still leverage on that effect.

Method Relative improvement score
Cosine distance 0.5336
Vector norm 0.5298
RL dual oracle model 0.5284
Least confident 0.5090
Margin sampling 0.5026
Diff uniform 0.5023
RL oracle human 0.4951
Contextual diversity score 0.4944
Mutual info uniform 0.4853
Entropy 0.4844
RL dual oracle human 0.4820
RL oracle model 0.4691

Table 6.4: Relative improvement scores (Equation 6.3) of all methods on the public data

In order to answer the second research question on which Active Learning performs
best, we compare the relative improvement scores for all the methods. The relative
improvement score was introduced in Section 6.1 and is designed to give methods which
lead to an early increase of performance a high score. In Table 6.4 we list all the methods
in decreasing order with respect to their relative improvement scores. Under this measure
the cosine distance method performs best.
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6.3 Real data
We ran three rounds of experiments for the real document data set. The first one compares
the score methods described in Section 4.1, the second one compares the two distance
metric methods from Section 4.3 and the third one compares the two reinforcement
methods from Section 4.4.2. We expected the performance to improve for each round due
to the increasing complexity of the methods. For that we included the best performing
method of the respective previous round in the second and third round.

6.3.1 Results

For all three rounds we ran 5 active learning cycles as described in Section 5.3. As stated
before the entropy methods serves as a baseline for the other methods.

1. Evaluation round (score methods)

In this round the model was fine-tuned on 25% of the data while 20% of the data were
held out as the test set. The remaining 55% were split into the 5 active learning batches
chosen by the respective method. The results for the first round can be seen in Table 6.5.
To compare the methods we plot the performance values against the fraction of samples
used. We do this for all the models, the plot can be seen in Figure 6.7.

Figure 6.7: Plotted accuracy on held out test set of visual, text and multi-modal mode,
when trained on samples chosen by respective Active Learning method
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6.3. Real data

Percentage of samples Visual model Text model Multimodal model
Margin Sampling
0 0.53 0.56 0.62
20 0.56 0.62 0.66
40 0.56 0.62 0.65
60 0.57 0.65 0.69
80 0.57 0.66 0.69
1 0.58 0.68 0.70
Entropy
0 0.53 0.56 0.62
20 0.56 0.61 0.66
40 0.56 0.64 0.68
60 0.56 0.62 0.66
80 0.59 0.66 0.72
1 0.59 0.67 0.70
Mutual Uniform
0 0.53 0.56 0.62
20 0.55 0.63 0.65
40 0.56 0.63 0.67
60 0.58 0.63 0.67
80 0.57 0.66 0.71
1 0.58 0.66 0.71
Uniform Diff
0 0.53 0.56 0.62
20 0.55 0.62 0.67
40 0.56 0.64 0.67
60 0.57 0.66 0.69
80 0.60 0.67 0.69
1 0.59 0.67 0.69

Table 6.5: Accuracy on held out test set of visual, text and multi-modal mode, when
trained on samples chosen by respective Active Learning method

2. Evaluation round (distance methods)

For this round we changed the split of the data set into 5% for initial fine tuning and 10%
as a test set. The remaining 85% were used to evaluate the Active Learning methods.
Additionally to the two distance metric methods we included Uniform Diff as this method
was performing best in the previous round. The results can be seen in Table 6.6. Again
we plot the performance values for all models against the fraction of samples used. The
plot can be seen in Figure 6.8.
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Percentage of samples Visual model Text model Multimodal model
Vector Norm
0 0.33 0.40 0.33
20 0.41 0.49 0.50
40 0.45 0.52 0.52
60 0.48 0.61 0.60
80 0.55 0.64 0.65
1 0.56 0.63 0.69
Diversity Score
0 0.33 0.40 0.33
20 0.38 0.51 0.53
40 0.44 0.61 0.61
60 0.50 0.63 0.67
80 0.51 0.65 0.65
1 0.55 0.68 0.71
Uniform Diff
0 0.33 0.40 0.33
20 0.37 0.55 0.57
40 0.47 0.63 0.63
60 0.47 0.65 0.68
80 0.54 0.66 0.68
1 0.57 0.67 0.70

Table 6.6: Accuracy on held out test set of visual, text and multi-modal mode, when
trained on samples chosen by respective Active Learning method

3. Evaluation round (reinforcement methods)

We keep the data set split as before, so 5% for initial fine-tuning, 10% for the test set and
85% for the Active Learning methods and included the best performing method from
the previous run again. As Uniform Diff outperformed the two distance metric methods
we compared this score method against the human and model method. The results of
this last run can be seen in Table 6.7. As before we plot the performance values for all
models against the fraction of samples used. The plot can be seen in Figure 6.9.

50



6.3. Real data

Figure 6.8: Plotted accuracy on held out test set of visual, text and multi-modal mode,
when trained on samples chosen by respective Active Learning method

6.3.2 Discussion

Machine learning task

We make a number of observations, which we summarize and discuss. Starting with three
main observations which are independent from Active Learning and are general for the
machine learning task:

• When using 100% of the samples the different methods do not achieve the same
performance

• Training with more data sometimes leads to a drop in performance

• The text model outperforms the visual model in all cases and sometimes even the
multi-modal model.
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Percentage of samples Visual model Text model Multimodal model
Oracle Human
0 0.30 0.44 0.31
20 0.35 0.58 0.58
40 0.49 0.53 0.56
60 0.48 0.63 0.66
80 0.50 0.65 0.69
1 0.57 0.70 0.73
Oracle Model
0 0.30 0.44 0.31
20 0.28 0.53 0.51
40 0.41 0.57 0.56
60 0.49 0.65 0.64
80 0.48 0.65 0.66
1 0.54 0.69 0.70
Uniform Diff
0 0.33 0.40 0.33
20 0.37 0.55 0.57
40 0.47 0.63 0.63
60 0.47 0.65 0.68
80 0.54 0.66 0.68
1 0.57 0.67 0.70

Table 6.7: Accuracy on held out test set of visual, text and multi-modal mode, when
trained on samples chosen by respective Active Learning method

The first point might be confusing since when using all samples one might expect the same
performance for the machine learning model. This is given the strong assumption that
training samples are independent from each other. Independent from each other means
that the ordering in which a model receives the training data does not matter. Regardless
of the assumption being true or not the reason for the different model performances with
all training data is another one. As describes in Section 5.3 we accumulate the training
batches chosen by the Active Learning method. This means that when training with
100% of the training samples, the model was already trained 4 times on the first chosen
batch, 3 times on the second batch, etc. These batches differ of course depending on the
Active Learning method.
The second observation of a drop in performance can be caused by over-fitting [52] or a
distribution shift in the training data. To avoid such behavior of the model early-stopping
as described in Section 5.2.2 can be used. It is clear that a model which scores a higher
accuracy is preferred over a lower scoring model even when the latter one was trained on
more data.
The last point comes as no surprise since we are dealing with text documents. What
surprises is that the text model sometimes outperforms the multi-modal model as well
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6.3. Real data

Figure 6.9: Plotted accuracy on held out test set of visual, text and multi-modal mode,
when trained on samples chosen by respective Active Learning method

even though the multi-modal model is composed of the text model and the visual model.
For example in Figure 6.9 we see the samples chosen by the Oracle Model method lead to
a text model outperforming the multi-modal one. Apparently the multi-modal model has
not yet learned to trust the predictions of the text-model. The relative low performing
visual model for this case could also pull the performance of the composed model. Since
we cannot access the models in this case we have to be content with assumptions.

Active Learning methods

Next we move to the discussion of the individual Active Learning methods. As we can
see in Figure 6.7 the text model benefits the most from the score methods. Since the
score calculations are based on the output of the multi-modal model we can conclude
that the multi-modal model prioritises the text model. The two highest overall values
are achieved by the entropy method on 80% of training samples with 72% accuracy and
by the Oracle Human method with 73% accuracy when using 100% of the training data.
Since we are interested in reducing the number of samples we need to annotate, using
(and annotating) 80% or even 100% of available samples is not an option we consider. So
while these two methods rank highest with respect to highest accuracy achieved overall,
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6. Evaluation

we are interested in the methods which outperform the other methods in the first or
second active learning round.
For the score methods these are the Entropy and Uniform Diff methods. They both
achieve 66-68% accuracy with the first two chosen batches already. The accuracy for
Entropy drops significantly again for the third round. Interestingly the Mutual Uniform
method leads to the highest increase for the text model in the first round and to the
lowest increase in accuracy for the visual model. The multi-modal model scores the
lowest for this method in the first active learning round. The margin sampling method
leads to the best performance of the visual model in the first two rounds. The accuracy
for the multi-modal model increases significantly in the last three rounds when using
margin sampling which is not what we want. All in all Uniform Diff leads to the accuracy
development we can leverage on. The highest relative increase of accuracy is in the first
round and there is no drop of accuracy when more samples are used for training in the
later rounds.
For the distance methods from Section 4.3 we make similar observations as for the score
methods. As we can see in Figure 6.8 the Uniform Diff methods dominates the two
distance metric methods on nearly all Active Learning rounds. When comparing the two
distance method which each other the Diversity Score method outperforms the Vector
Norm method. For all three methods the predictions of the textual model are nearly as
good (and in one case even better) then the ones of the multi-modal model. With one
exception the models do not drop their accuracy in any of the Active Learning rounds.
As we can see in Figure 6.9 the Oracle Human method leads to the highest relative
increase in accuracy for the multi-modal model. Unfortunately the accuracy drops again
in the next round by 2%. The Oracle Model method does not lead to a drop in accuracy
for the multi-modal model, but for the visual model in the first round. Still the Oracle
Model only outperforms the Uniform Diff method by merely half a percent. Once again
the Uniform Diff method outperforms the other methods especially in the first few rounds.
To make a more quantitative statement on which method is suitable for the task we
use the evaluation metric which we introduced in Section 6.1. Since we always chose
the same size of batches in each evaluation round 1,2 and 3, we use Equation 6.3 to
calculate the relative improvement score. Note, that the first evaluation run was done
to experiment in the setting of Fine-Tuning an already trained classifier as described in
Section 5.3.2. Evaluation run 2 and 3 where done to experiment in the setting of Active
Learning for Transfer Learning where we trained a classifier (almost) from scratch on a
new domain as described in Section 5.3.1). For that we present the relative improvement
scores in two tables. Table 6.8 is contains the scores for evaluation round 1 and Table 6.9
for evaluation rounds 2 and 3.

Entropy Margin
Sampling

Mutual
Uniform

Uniform
Diff

Relative improvement score 0.0629 0.0580 0.0639 0.0626

Table 6.8: Relative improvement scores of evaluation round 1
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6.3. Real data

Oracle
Human

Oracle
Model

Uniform
Diff

Vector
Norm

Diversity
Score

Relative improvement score 0.3380 0.3073 0.3265 0.2665 0.3073

Table 6.9: Relative improvement scores of evaluation round 2 & 3

Based on this metric the results look a bit different then before. The best performing
score method is Mutual Uniform, which received the highest relative improvement score
(highlighted in yellow). Even though this method scores highest only in the last Active
Learning round the relative improvement for this method over all Active Learning rounds
is the highest. We see that the Entropy and Uniform Diff methods are pretty close in
terms of the score they received with Entropy scoring a bit higher.
When comparing the more complex methods which each other the Oracle Human method
scores the highest with Uniform Diff on a tight second place. The Oracle Model and
Diversity Score receive the same relative improvement score while the Vector Norm
method scores the lowest. Considering the complexity of an reinforcement learning oracle,
which needs to be trained on a predefined policy and needs training data itself, the
Uniform Diff method is still the better choice. This method needs nothing but a prediction
vector to calculate its score. This is done independently from all other predictions and
the computational costs for the score calculation are negligible.
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CHAPTER 7
Conclusion

In order to classify documents with machine learning algorithms like Convolutional
Neural Networks we require training data. The data must come as annotated samples.
When gathering new data the samples are often not annotated meaning they miss a
class label. Since annotation is done by humans and costly we employed Active Learning
methods to minimize the number of samples we need to annotate. To evaluate the usage
of Active Leaning methods for training sample selection we compared the difference
of samples which are needed to achieve the same performance when using no Active
Learning methods over using Active Learning methods. In order to compare the different
Active Learning method we used a newly introduced relative improvement score. The
relative improvement score is defined such that it gives a high value to Active Learning
method that improve the performance early in the annotation retraining process.
The Active Learning methods we employed come from three different families: Score
methods, distance based methods and adaptive methods. In addition to methods from
literature, we introduced two score methods and utilized known distance measures in a
novel way for our purposes. Furthermore, we adapted predictive methods to our use case.
The challenge we faced in the project set up in the K.Rex project was a double black box
scenario. While we did not have direct access to data and machine learning models in
the K.Rex project, we experimented with methods that have direct access to data and
machine learning models in an own classification set up. We found that we do not have a
disadvantage when dealing in a double black box scenario. By employing and developing
methods that work with predictions we have maximum flexibility when it comes to other
classification tasks and models. Our methods are applicable to all classifiers that output
a prediction vector. Our experiments were done over pools of unlabeled samples. We note
that the score methods and adaptive methods are applicable for stream based scenarios
as well.
Under the relative improvement score we saw a very strong performance of distance based
methods on the public data and a strong performance of the Oracle Human method and
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7. Conclusion

the Mutual Uniform method on the real data. In general, the usage of Active Learning
methods can reduce the amount of needed training samples drastically. For the public
data the Vector Norm method led to a 31% higher accuracy than the Entropy method
which is known to outperform random sample selection itself [2, 7]. The Vector Norm
method is based on the intuition that a diverse training set leads to an increase in
performance.
For future work diversity based approaches can be extended to the feature space of the
machine learning model. With feature space we mean the model’s internal representation
of samples. One possibility is to use the flattened vector which is used as an input for the
dense layers that do the classification. This vector is for example the flattened output of
the last inception layers in the Inception model we employed. Based on the flattened
vectors and a vector distance measure we can chose a diverse set of samples just as we
did based on the prediction vectors in Section 4.3.
Further future work could include reusing the reinforcement oracle from Section 4.4.2
for different machine learning models on different data. An already trained oracle could
make better decisions and lead to a better performance of the different models. Forbidden
knowledge transfer from one case data to another case data is prevented since the oracle
never sees the data but only the predictions made by the model.
In general, we can conclude that Active Learning methods should always be employed
when it is necessary to annotate samples. While the usage of reinforcement learning is
not ultimately justified considering the complexity of such an approach, we see great
potential for such methods when it comes to reusing oracles for other data sets and
models. For diversity and distance based approaches we found that traditional distance
measures like Cosine and Euclidean distance work better than novel distance measures
like the contextual diversity score. Even computationally inexpensive methods like score
calculations on individual prediction vectors save annotation effort and should always be
used for training data creation.
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